Функциональное заземление что это?
Alkstroy.ru

Строительный портал

Функциональное заземление что это?

Рабочее и защитное заземление

Заземляющими принято называть устройства, способные обеспечить надежные пути стекания аварийного тока в землю. Необходимость в этом может возникнуть по самым разным причинам, основные из которых – создать условия для нормального функционирования электроустановки или гарантировать безопасность работающих на ней людей. Эти функциональные различия следует четко усвоить. Они помогут понять, что называется рабочими заземлениями и в чем их отличие от защитных мер. В рассмотренных ранее причинных определениях в первом случае используется рабочее или функциональное заземление, а во втором – его аналог.

Рабочее заземление

Выдержка из ПУЭ-7, пункт 1.7.30. Рабочее (функциональное) заземление – заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности).

В отличие от защитного заземления, используемого исключительно в целях безопасности людей, рабочее заземление предназначается для того, чтобы гарантировать нормальную работу электрических приборов и устройств.

Обратите внимание: Эта его функция должна выполняться независимо от того, в каких условиях работает электрооборудование: в нормальных штатных или в аварийных.

Реализуется функциональное заземление самым непосредственным образом – через подсоединение металлических токопроводящих частей к так называемому «заземлителю». В качестве этой разновидности ЗУ допускается использовать подключенные к заземляющей конструкции молниеотводы, защищающие предприятия и другие объекты от грозы. Эти же устройства помогают уберечь действующее оборудование от наведенных (или индуцированных) ЭДС, представляющих ничуть не меньшую угрозу для него.

В ряде случаев функциональное заземление организуется для того, чтобы создать условия для срабатывания специальных приспособлений пробивного типа (предохранителей, резисторов и подобных им).

Хорошо усвоив, что называют рабочими заземлениями, пользователь сможет понять не только их отличие от защитного, но и то, что эффективность его действия зависит от параметров конструкции ЗУ. Под ним в первую очередь понимается сопротивление цепи стекания тока в землю, величина которого согласно требованиям ПУЭ не должна превышать нормируемого значения (25-30 Ом).

Защитное заземление

Защитным заземлением называют умышленное соединение металлических нетоковедущих частей с землей или же ее аналогом с целью защиты людей от удара током.

Дополнительная информация: Функцию заземлителя в этом случае могут выполнять и естественные ЗУ, под которыми понимаются уже проложенные в земле элементы строительных конструкций и коммуникаций.

Схема сети с заземленной нейтралью и защитным заземлением потребителя электроэнергии.

С помощью искусственных и естественных заземляющих конструкций удается предотвратить поражение человека током в ситуациях, когда корпус оборудования или бытового прибора случайно оказывается под напряжением. В этом случае срабатывает принцип шунтирования аварийной цепи более низким сопротивлением, по которому опасный ток «уходит» в землю.

Согласно этому рисунку через тело прикоснувшегося к корпусу человека протекает лишь малая доля общего тока, а большая его часть «стекает» в грунт через параллельную цепь.

Чем они отличаются

Разницу между двумя этими видами сможет уловить только основательно изучивший их особенности человек. Для непрофессионала они с трудом различимы, поскольку чаще всего организуются с привлечением одних и тех же технических средств.

Отличия между рабочим заземлением и защитным заземлением проявляется не столько в технической части, сколько в том, для каких конкретных целей они организуются. В обоих случаях для обустройства ЗУ используются специальные приспособления (конструкции), способные отводить опасные токи на землю. И там и там потребуется присоединить корпуса приборов через толстую медную жилу к тому сооружению, которое выбрано для надежной защиты электрооборудования и людей.

Хорошо различимое отличие рабочего заземления от своего аналога состоит в следующем:

  1. функциональное заземление делается с целью защиты оборудования и приборов, подключенных к данной электрической сети, от выхода их из строя;
  2. для его реализации допускается использовать молниеотводы и распределенные системы выравнивания потенциалов, подключенные к местному заземляющему контуру;
  3. оно в меньшей мере, чем защитное, обеспечивает безопасность работающего на линии персонала и простых людей.

Хороший пример такой разницы – так называемые «переносные» или временные конструкции, применяемые исключительно для защиты работающих на отключенном оборудовании специалистов. К защите электроустановок они никакого отношения не имеют (последние отключены) и даже при случайной подаче в линию стороннего напряжения представляют угрозу лишь для человека. То есть это – чисто защитная мера.

Другим характерным отличием защитного заземления является обязательное присоединение к заземлителю все металлические части корпусов оборудования, то есть каркасы, рамы, стальные ограждения и тому подобное. Функцию самого заземлителя в этом случае могут выполнять как искусственно созданные конструкции, так и уже проложенные в земле стальные элементы коммуникаций (включая различные виды металлических труб и кабельных экранов).

Важно! Исключение составляют элементы газовых и нефтяных трубопроводов.

К частям оборудования, подлежащим обязательному рабочему занулению и заземлению относятся:

  • Приводы всех без исключения электрических аппаратов.
  • Корпуса работающих на объекте электрических машин, а также понижающих трансформаторов, используемых для питания переносных светильников.
  • Обмотки измерительных преобразователей, относящихся к разряду вторичных.
  • Стальные остовы и корпуса передвижных (переносных) электрических приемников.
  • Все открытые части работающего в данный момент оборудования.

Во всех этих случаях при невозможности организации заземления для снижения опасности поражения людей согласно ПУЭ используют электроприемники, рассчитанные на напряжение не более, чем 42 Вольта.

В заключение еще раз отметим, что различия двух типов заземлений в основном проявляются в их назначении и касаются технической стороны лишь не в значительной мере.

Рабочее заземление

Согласно Правилам устройства электроустановок, рабочим (или функциональным/технологическим) заземлением называется заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки, но не в целях электробезопасности.

Подразумевается, что оборудование работает надежно, а если сопротивление функционального заземления ≤4 Ом, то проблемы электробезопасности вообще исключены.

Понятие функционального заземления (далее FE) для сетей питания информационного оборудования и систем связи описано в следующих нормативных документах:

  • ГОСТ Р 50571.22-2000, п. 3.14 (707.2): «Функциональное заземление: заземление для обеспечения нормального функционирования аппарата, на корпусе которого по требованию разработчика не должен присутствовать даже малейший электрический потенциал (иногда для этого требуется наличие отдельного электрически независимого заземлителя)».
  • ГОСТ Р 50571.21-2000, п. 548.3.1: «Функциональное заземление может выполняться путем использования защитного проводника (РЕ-проводника) цепи питания оборудования информационных технологий в системе заземления TN-S.

Допускается функциональный заземляющий проводник (FE-проводник) и защитный проводник (РЕ-проводник) объединять в один специальный проводник и присоединять его главной заземляющей шине (ГЗШ)».

Для правильного понимания определений, данных выше, необходимо договорится о смысле некоторых слов:

  • «Как правило» подразумевает, что требование (условие, решение) является преобладающим. Его несоблюдение возможно, но требует весомых обоснований.
  • «Допускается» означает, что условие следует выполнять лишь как исключение в силу вынужденных обстоятельств.
  • «Рекомендуется» – решение является оптимальным, но его выполнение не обязательно.
  • «Может» символизирует правомерный вариант, один из нескольких.

Причины распространения функционального заземления

Первая причина
В 90-х гг. с увеличением распространения вычислительной техники, мощность которой постоянно увеличивалась, возникла необходимость обеспечить ее надежную работу в сетях типа ТN-C.

На рис. 1 показана схема рабочего заземления с использованием PEN-проводника (совмещенного нулевого рабочего N и нулевого защитного PE):

Информация передается по линии связи между 2-мя компьютерами. Возьмем за отправную точку корпусное заземление. Заземление, выполненное проводником РЕN, по которому текут рабочие токи, приводит к разнице потенциалов между корпусами приборов. Получается, что в линию связи вносится разница потенциалов, пульсации, гармоники и высокочастотные помехи при работе оборудования с большими реактивными токами.

Решением проблемы служило локальное применение отдельной системы рабочего заземления, которое обеспечивало устойчивую работу компьютеров. Стоит отметить, что стоимость перехода на «пятипроводную» систему типа TN-S была значительно выше.

Вторая причина
Распространению функционального заземления также способствовало плохое состояние защитного заземления в электроустановках. При поставках «чувствительной» электронной техники от заказчика требовалось создание отдельного заземления.

Третья причина
Возникновение специфических и строгих требований по защите информации, особых лабораторий и других аналогичных объектов также послужило распространению FE.

Основные схемы выполнения функционального заземления

Вариант «А» существует и даже исполняется, но является самым опасным из представленных с точки зрения электробезопасности и безопасности объекта в целом. Подробные объяснения приведены ниже.

Читать еще:  Прокладка полипропиленовых труб в стяжке пола

Вариант «В» является формальным подходом, выполнение системы с его использованием полностью законно. Это качественное защитное заземление с радиальной схемой разводки, которое используется для вновь строящихся объектов.

Вариант «С» – удобная схема для реконструируемых объектов. С точки зрения воздействия помех на ответственное оборудование данный вариант значительно лучше, чем «В».

Недостатки варианта «А»:

1. Разрушается целостность основной системы уравнивания потенциалов, что приводит к появлению разности потенциалов на независимых системах заземления в процессе эксплуатации.

Причины появления разности потенциалов могут быть такими:

    КЗ на корпус в сети ТN-S до срабатывания системы защиты (

110B).

  • Внешние электромагнитные поля (близкий разряд молнии) из-за разницы в длине проводников. Иногда измеряется в кВ.
  • Занос потенциала на ГЗШ при срабатывании молниеприемника, при этом разница потенциалов достигает исчисляется сотнями кВ. Подробнее написано в статье «Защитное заземление. Основная и дополнительные системы уравнивания потенциала».
  • 2. Крайне низкие токи короткого замыкания фаза-корпус относительно сетей типа TN-S со всеми вытекающими последствиями (см. рис. 3).

    Рис. 3. Схема протекания тока замыкания на корпус аппарата при использовании независимого функционального заземления в сети типа TN

    FE не имеет точки соединения с ГЗШ и с нейтралью, и токи короткого замыкания составят только десятки ампер. Ситуация ухудшается отсутствие в цепи устройства защитного отключения. Максимальный ток короткого замыкания составит 36,6 А:

    Время отключения составит 30-120 сек, и все это время на корпусе будет присутствовать практически фазное напряжение по корпусным элементам, и протекать ток большой величины, что может привести к возгоранию. При наличии автоматов с номинальным рабочим током более 32 А цепь вообще не отключится.

    Повторим: вариант «А» использовать для сетей типа TN-S крайне опасно.

    Ф – сетевой фильтр, ФЗ – фильтр заземления.

    Вариант «D» демонстрирует соединение FE и ГЗШ с использованием разрядника уравнивания потенциалов. Вариант имеет проблему: он сработает только в случае заноса потенциала при грозовых разрядах, когда разница в напряжении достаточна для срабатывания разрядника (600-900В). В остальных случаях целостность системы основного уравнивания потенциалов электроустановки остается нарушенной и электробезопасности при первичном пробое не обеспечивается.

    Вариант «Е» разработан с учетом установки в разрыв проводника уравнивания потенциалов дроссельного фильтра заземления (например, «Квазар Ф-ХХХРЕ», изготовитель ГК «Полигон»).

    Варианты «F», «G», «H» показывают построение FE с постепенным улучшением уровня защиты ответственного электрооборудования от помех без проблем с электробезопасностью.

    Функциональное заземление в лечебно-профилактических учреждениях

    Функциональное заземление относительно ЛПУ осуществляется для обеспечения нормальной стабильной работы высокочувствительной электроаппаратуры при питании от разделительного трансформатора или согласно техническим требованиям на некоторые виды оборудования.

    В циркуляре №24/2009 написано, что при отсутствии особых требований изготовителей аппаратуры общее сопротивление растеканию тока заземляющего устройства не должно превышать 2 Ом.

    Требование подключения к главной заземляющей шине: «…Устройство независимых заземлителей для защитного и/или функционального заземления медицинского оборудования, не подключенных к ГЗШ, в зданиях с медицинскими помещениями не допускается…».

    Взаимное влияние разных систем заземления отдельных помещений при наличии связи через сторонние проводящие части

    В качестве примера рассмотрим следующую ситуацию:

    Есть 2 помещения с электрооборудованием, в каждом установлена дополнительная система уравнивания потенциалов. Помещение номер №1 подключено к системе защитного заземления (РЕ) и имеет помехообразующую нагрузку. В помещении №2 есть ответственное электрооборудование и организовано подключение к системе FE.

    На рисунке видно, что между двумя системами заземления за счет сторонних проводящих частей (в данном случае система отопления) образуется «паразитная» связь с сопротивлением RСП.

    В итоге по FE-проводникам протекает часть тока утечки IУ2. Вычислить величину этого тока достаточно сложно. С одной стороны, FE-проводники из медного провода с хорошей проводимостью и небольшим сопротивлением. С другой стороны, водопроводные трубы и прочие сторонние проводящие части в сумме могут обладать значительным сечением, что компенсирует плохую проводимость железа. Поэтому IУ2 = 0,5*IУ допустимое реальное соотношение.
    Избавиться хотя бы от одного проводника «А», «В» или «С» невозможно по причине безопасности объекта и электробезопасности персонала.
    Как вариант, можно сильно увеличить сечение проводника «D», что пропорционально уменьшит ток утечки IУ2. Но, как вы понимаете, это повлечет значительные затраты.

    Информационное заземление

    При построении структурированных кабельных систем (СКС), сетей передачи данных и ЛВС, а также других объектов информационных технологий у многих специалистов-электриков закономерно возникают вопросы по проектированию заземления. Чтобы не было неопределенностей в этих вопросах введем базовые понятия и определения в этой сфере знаний.
    В соответствии с международными и российскими нормативными документами имеются два больших класса заземлений: защитное и функциональное заземление. Также можно использовать терминологию (рабочее или информационное заземление). Исходя из этих факторов, шины заземления или проводники, маркируются как PE – защитное заземление и FE – функциональное заземление.
    Воспользуемся основным нормативным документом для инженера-электрика, а именно, «Правилами устройства электроустановок» ( ПУЭ п.1.7.29 ): Защитное заземление выполняется только в целях электробезопасности. При работе с любыми электроприборами персонал должен быть надежно защищен от токов низкой частоты и высокой амплитуды, которые представляют серьезную угрозу здоровью и жизни каждого человека.
    А вот заземление, которое мы называем информационным (функциональным), обеспечивает именно работу самой электроустановки. То есть, такое заземление выполняется не в целях электробезопасности объекта. При разработке таких систем можно исходить из положений ПУЭ п. 1.7.30.
    Проектировщику надо знать, что нельзя использовать только информационное заземление, без применения защитного.
    Работа функционального заземления идет с токами высокой частоты и низкой амплитуды и задача его обеспечить электромагнитную совместимость (ЭMC) и защитить от электромагнитных помех. Токи ВЧ низкой амплитуды непосредственно не угрожают жизни человека, но могут влиять на качество связи, например в СКС.
    При определении задач FE советуем руководствоваться ГОСТ Р 50571.22-2000 п. 3.14 (707.2), который как раз таки описывает как спроектировать заземление для систем обработки информации и связи.
    Проектировщики, как правило, выставляют жесткие требования, при соблюдении которых на корпусе заземляемого устройства не должно быть даже самого маленького электрического потенциала. Именно это условие и есть залог нормального функционирования оборудования связи или информационных технологий.

    Как выполнить функциональное заземление на объекте?

    Для этой цели необходимо использовать заземляющее устройство функционального заземления вместе с функциональными проводниками, которые служат для соединения электроприемников с главной заземляющей шиной. При этом, согласно ГОСТ 50.571-4-44-2011 п. 444.5.1. все проводники защитного и функционального заземления должны быть соединены с этой шиной, а заземлители соответствующего назначения соединены между собой. Такие меры необходимы для исключения их влияния друг на друга, которое приводит к опасному повышению напряжения, риску повреждения оборудования и опасности поражения электрическим током.
    Если следовать положениям ГОСТ Р 50571.21-2000 п. 548.3.1, то можно реализовать такое схемное решение: объединяем функциональные и защитный проводники (соответственно FE и PE) в специальный проводник (PEF-проводник). А уж затем присоединим его к ГЗШ, так называемой, главной заземляющей шине электроустановки. В TN-S системе для функционального заземления разрешается использовать PE-проводник цепи питания оборудования обработки информации.

    Требования к информационному заземлению

    FE-заземление обычно описывается требованиями, которые излагаются в эксплуатационной документации изготовителя изделия (паспорт, технические условия, технический регламент и пр.) или в ведомственных нормативных документах. К примеру, для продуктов и систем информационно-коммуникационных технологий (ИКТ), ранее средств ВТИ, будем использовать положения нормативного документа СН 512-78 («Технические требования к зданиям и помещениям для установки средств вычислительной техники»). Опираясь на инструкции, изложенные там, приходим к выводам, что сопротивление заземления такого оборудования не должно превышать 1 Ом. А вот если мы проектируем заземление для чувствительных медицинских приборов, то это значение будет не более 2-х Ом. («Пособие по проектированию учреждений здравоохранения к СНиП 2.08.02-89»).
    Здесь используется, так называемая «лучевая схема заземления», с заземлителем типа FE (низкоомным), что приводит к работе без электрических помех всего комплекса ИКТ.
    В отдельных случаях так же возможно использовать и модульный глубинный заземлитель.
    Введем понятие электромагнитной совместимости (ЭМС) оборудования и для этого обратимся к ГОСТ Р 50397-92 (МЭК-50-161-90).
    ЭМС оборудования, рассматривается в общем случае, как способность оборудования качественно работать в условиях заданной электромагнитной обстановки и не создавать недопустимых помех электромагнитной природы другим приборам и электросети.
    И далее с этих позиций попытаемся выяснить причинно – следственную связь между FE – заземлением, ЭМС и безопасностью ИКТ.
    Продукт или система ИКТ будет удовлетворять требованиям Европейской директивы по ЭМС EN 55022 при выполнении следующих условий:

    • Электромагнитное излучение от активного оборудования в окружающую среду не превышает нормативы EN 55022
    • Помехозащищенность активного оборудования не уступает нормативам EN 55024
    • Информационная кабельная проводка (т.е. среда передачи сигналов) правильно смонтирована и корректно заземлена
    Читать еще:  Как проверить заземление мегаомметром?

    Еще один важный фактор – это уравнивание потенциалов между заземляющими устройствами PE и FE – типов. Именно этим моментом определяются условия электробезопасности персонала, а также и помехоустойчивость систем ИКТ. Как это реализуется на практике? Обычно электрики монтируют кольцевой соединительный проводник и соединяют его с ГЗШ.
    Если же продукты ИКТ работают с напряжением питания 5-12 В постоянного тока и являются слаботочными, то здесь возможны паразитные сигналы, возникшие именно из-за разности потенциалов и их флуктуаций. Дело в том, что некоторые системы ИКТ могут воспринять такой паразитный сигнал, как информационный, вследствие этого, могут произойти сбои в сетях связи, на серверах, а также нарушения работы информационно – измерительных систем. Особенно опасна такая ситуация на объектах критической инфраструктуры.
    Другим аспектом качества FE – заземления является информационная безопасность продуктов и систем ИКТ. Дело в том, что побочные электромагнитные излучения и наводки (ПЭМИН) наряду с проблемами ЭМС создают технические каналы утечки конфиденциальной информации, хорошо известные специалистам по информационной безопасности (ИБ).
    Особенно актуальна эта проблема для компьютерного оборудования и систем передачи данных, задействованных в обработке информации, которая считается конфиденциальной. Но это уже другая история, относящаяся к компетенциям ФСТЭК, Роскомнадзора и ФСБ.

    Независимое исполнение FE – заземления

    Для высокочувствительных медицинских приборов в учреждениях здравоохранения необходимо выполнять отдельное функциональное заземление, которое не связано с защитным, а также с системами уравнивания потенциалов объекта.
    При данном выполнении функционального заземления заземляющее устройство FE-заземления необходимо размещать отдельно (не менее 15 метров) от зоны влияния PE – заземлителей. Следует подчеркнуть, что такая схема представляет собой особый (нетипичный) вариант заземления и тут применимы повышенные меры электробезопасности.
    Если в документации на оборудование ИКТ прямо указано на необходимость независимого информационного заземления, то в этом случае в шкафу с оборудованием, как правило, монтируют две независимые шины заземления PE и FE. Шину FE в таком случае изолируют полностью от корпуса шкафа, экраны сигнальных проводников присоединяют к ней.
    На практике FE-проводник присоединяют с помощью медного кабеля (сечение от 1х25 мм2), который надежно изолирован с FE-заземлителем. Причем этот заземлитель должен быть отнесен на безопасное расстояние (более 20 м) от PE-заземлителя. А вот корпус шкафа, где размещено оборудование, должен быть заземлен с помощью проводника PE на шину уравнивания потенциалов, которая соединена с ГЗШ.

    Заключение

    В наше время применение модульно–штыревых заземлителей глубокого залегания (до 30 м и даже более) и других технологических схем позволяет проектировать повторное защитное заземление PE на входе в здание равным по параметрам сопротивления функциональному заземлению. И в этом случае, отпадает необходимость в использовании отдельных систем заземления.
    Для более подробного ознакомления с технологией и тактико–техническими характеристиками модульных систем заземления желающих отсылаем на наш интернет–ресурс.

    Форум АСУТП

    Клуб специалистов в области промышленной автоматизации

    • обязательно заполнить свой профиль на русском языке кириллицей
    • не писать свой вопрос в первую попавшуюся тему – вместо этого создать новую тему
    • дублирование сообщений приравнивается к спаму
    • за поиск и предложение пиратского ПО – бан без предупреждения
    • рекламу и частные объявления мы не размещаем ни на каких условиях

    Функциональное заземление FE в системе TN

    Функциональное заземление FE в системе TN

    Сообщение ink_asu » 30 дек 2010, 21:20

    Re: Функциональное заземление FE в системе TN

    Сообщение Михайло » 31 дек 2010, 04:42

    Re: Функциональное заземление FE в системе TN

    Сообщение ink_asu » 31 дек 2010, 07:23

    Re: Функциональное заземление FE в системе TN

    Сообщение VADR » 31 дек 2010, 09:19

    Re: Функциональное заземление FE в системе TN

    Сообщение ink_asu » 31 дек 2010, 09:52

    Re: Функциональное заземление FE в системе TN

    Сообщение Михайло » 31 дек 2010, 12:03

    Re: Функциональное заземление FE в системе TN

    Сообщение Никита » 31 дек 2010, 13:14

    Re: Функциональное заземление FE в системе TN

    Сообщение ink_asu » 31 дек 2010, 17:45

    Re: Функциональное заземление FE в системе TN

    Сообщение Никита » 31 дек 2010, 18:30

    Re: Функциональное заземление FE в системе TN

    Сообщение ink_asu » 06 янв 2011, 01:09

    Re: Функциональное заземление FE в системе TN

    Сообщение Михайло » 06 янв 2011, 06:34

    Re: Функциональное заземление FE в системе TN

    Сообщение ink_asu » 06 янв 2011, 10:51

    ГОСТ Р 50571.21-2000. Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Раздел 548. Заземляющие устройства и системы уравнивания электрических потенциалов в электроустановках, содержащих оборудование обработки информации http://snipov.net/c_4709_snip_101686.html#i68822
    3.15 функциональное заземление: Заземление, для обеспечения нормального функционирования аппарата, на корпусе которого по требованию разработчика не должен присутствовать даже малейший электрический потенциал (иногда для этого требуется наличие отдельного электрически независимого заземлителя).
    ГОСТ Р 50571.21-2000. Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Раздел 548. Заземляющие устройства и системы уравнивания электрических потенциалов в электроустановках, содержащих оборудование обработки информации http://snipov.net/c_4709_snip_101686.html#i68822
    548.7.1.2 Подсоединения к проводнику заземляющей шины
    К проводнику заземляющей шины можно подсоединить(то есть уже и не обязательно):
    – все проводники, отвечающие требованиям пункта 413.1.2.1 ГОСТ 30331.3 / ГОСТ Р 50571.3 и пункта 542.4.1 ГОСТ Р 50571.10;
    – проводящие экраны, оболочки, бронирующие покрытия телекоммуникационных кабелей или телекоммуникационного оборудования;
    – проводники эквипотенциального соединения железнодорожных систем;
    – заземляющие проводники для защиты устройств от перенапряжений;
    – проводники заземления антенн радиосвязи;
    – проводник заземления заземленной системы источника питания постоянного тока для оборудования информационных технологий;
    – проводники функционального заземления;
    – проводники систем молниезащиты (МЭК 1024-1) [2];
    – проводники дополнительного эквипотенциального соединения в соответствии с пунктом 747.1.2 ГОСТ Р 50571.10.

    Примечание – Следует помнить, что сечение заземляющего проводника, требуемое функциями информационной технологии (функционального заземляющего FE-проводника), может превышать требования защиты от поражения электрическим током (защитного заземляющего РЕ-проводника)

    Re: Функциональное заземление FE в системе TN

    Сообщение Никита » 06 янв 2011, 19:37

    Вот эта фраза мне решительно нравится. Потенциал -аддитивная величина, следовательно потенциал относительно чего? Земли? В какой именно ее точке? Другой вопрос – а если потенциал присутствует на ГЗШ, а соответственно и на корпусах оборудования, заземленного через PE-проводник – уравниваться они будут по экранам кабелей? Или кабели в разъемы будут включаться с искрами?

    Если же смотреть 548.7.1.2, то требования соединения с ГЗШ он не отменяет. Речь идет о проводнике заземления, или удлинении ГЗШ, или о том что в седьмой редакции правил называется системой уравнивания потенциалов, или по-русски о простреленной по стенам здания стальной полосе 40х4. Можно вешать на нее, можно тащить к шине.

    Еще раз обращаю внимание на требование из которого вся путаница – о том, что растекание должно быть меньше 4 Ом. 4 Ома должно быть на ТП. Возможно со старых времен остался повторный 4-омный возле здания. Так вот этот 4-омный повторный и надо добить до требуемого или соорудить новый. Дальше слова Михайло о том, что проводник должен быть изолированным – в чем-то он прав. В общем нужно проводники FE-системы выполнить так, чтобы никакой сварной не мог даже случайно пустить туда свои 300 А, токи от УЗИП, конденсаторов в блоках питания и пр. стекали на ГЗШ своими собственными путями по своим PE-проводникам. т.е. исключить протекание токов по FE-проводам во всех режимах работы установки, включая аварийные. Дальше, учитывая то что на ГЗШ должен быть посажен весь доступный прикосновению металл здания, а токов по FE нет, соответственно нет и падений, можно считать что внутри здания на корпусах действительно нет потенциала относительно любой другой части здания.
    Это что касается потенциалов и электробезопасности.
    А вот дальше начинается область, которая для меня пока недостаточно прозрачна – оборудование связи работает на высоких частотах, и если для того чтобы уравнять 50-герцовые наводки достаточно медного провода на шесть квадрат, то что нужно здесь – сказать не могу.
    Возможно, чувствительное оборудование и действительно требует отдельных заземлителей, но тогда потребуется принятие мер для обеспечения электробезопасности. Т.е. эта система заземления должна рассматриваться как находящаяся под напряжением с выполнением всех требований безопасности и полностью гальванически отделена от TN-сети и недоступна прикосновению. И боже упаси, если туда попадет металлический корпус прибора или что-то подобное. В общем скорее всего дорого и бестолково.

    Читать еще:  Краска на резиновой основе для бетона

    Рабочее заземление: определение, устройство и назначение

    Заземление электроустановок делится на два основных вида – функциональное рабочее и защитное. В некоторых источниках встречаются и дополнительные виды заземлений, такие как измерительное, контрольное, инструментальное и радио.

    Рабочее или функциональное заземление

    В разделе ПУЭ в параграфе № 1.7.30 дано определение рабочего заземления: «рабочим называют заземление одной или нескольких точек токоведущих частей электроустановки, которое служит не в целях безопасности».

    Такое заземление подразумевает электрический контакт с грунтом. Оно необходимо для нормальной эксплуатации электроустановки в штатном режиме.

    Назначение функционального заземления

    Для того чтобы понять, что называется рабочим заземлением, следует знать его основное назначение – устранение опасности удара током в случае соприкосновения человека к корпусу электроустановки или к её токоведущим частям, которые в данный момент находятся под напряжением.

    Такая защита применяется в сетях с трёхфазной системой распределения тока. Изолированная нейтраль необходима для электросети, где напряжение не превышает 1 кВ. В сетях с напряжением свыше 1 кВ защитное заземление допускается делать с любым режимом нейтрали.

    Как работает защитное (функциональное) заземление

    Принцип действия функционального заземления заключается в снижении напряжения между корпусом, который в результате непредвиденной аварии оказался под током, и землёй до безопасной для человека величины.

    Если корпус электроустановки, оказавшийся под током, не оснащён функциональным заземлением, то прикосновение человека к нему равносильно контакта с фазным проводом.

    Если учесть, что сопротивление обуви человека, который дотронулся до электроустановки, и пола, на котором он стоит, ничтожно мала относительно земли, то ток может достигнуть опасной величины.

    При правильной работы функционального заземления ток, проходящий через человека, будет безопасным. Напряжение во время прикосновения также будет незначительным. Основная часть электроэнергии будет уходить через заземляющий проводник в землю.

    Различия между рабочим и защитным заземлениями

    Рабочее и защитное заземление отличается друг от друга прежде всего назначением. Если первое необходимо для обеспечения правильной и бесперебойной работы электрооборудования, то второе служит для защиты людей от поражения электрическим током. Также оно защищает и оборудование от поломок в случае пробоя какого-нибудь электрического прибора на корпус. Если здание оборудовано громоотводом, такой тип заземления защитит приборы от перегрузки в случае удара молнии.

    Рабочее заземление электроустановок, в случае возникновения чрезвычайной ситуации, сыграет роль защитного, но основная её функция – обеспечение правильной бесперебойной работы электрооборудования.

    В неизменном виде функциональное заземление применяют только на промышленных объектах. В жилых домах используется заземляющий проводник, который подводится к розетке. Однако есть бытовые приборы в доме, которые таят в себе потенциальную опасность для потребителя, поэтому не будет лишним заземлить их, используя глухозаземлённую нейтраль.

    Домашние приборы, которые требуется подключить к рабочему заземлению:

    1. Микроволновка.
    2. Духовка и плита, которые работают за счёт электричества.
    3. Стиральная машина.
    4. Системный блок персонального компьютера.

    Конструкция заземления

    Рабочее заземление представляет собой вбитые в землю железные штыри, играющие роль проводников, на глубину около 2-3 метров.

    Такие металлические прутья соединяют заземлительные клеммы электрооборудования с шиной заземления, тем самым образуя металлосвязь.

    Металлосвязь есть в каждом жилом доме. Это сварная железная конструкция, которая соединяет друг с другом верхние концы заземлителей. Её заводят к вводному щитку дома для дальнейшей разводки по квартирам.

    В качестве заземляющего проводника используют шину или провод с сечением не менее 4 кв. мм, окрашенные в жёлтые и зелёные полосы. Кабель в основном используют для переноса функционального заземления от шины к шине.

    В целях безопасности проводится периодическая проверка электронного сопротивления металлической связи заземления. Оно измеряется от клеммы заземления электроустановки до наиболее удалённого от неё наземного контура заземления. Показатель сопротивления в любой части рабочего заземления не должен превышать 0,1 Ом.

    Для чего делают несколько заземлителей

    Электроустановку нельзя оснащать только одним заземлителем, поскольку почва является нелинейным проводником. Сопротивление земли находится в сильной зависимости от напряжения и площади контакта с воткнутыми штырями рабочего заземления. У одного заземлителя площадь контакта с почвой будет недостаточной, чтобы обеспечить бесперебойную работу электроустановки. Если установить 2 заземлителя на расстоянии в несколько метров друг от друга, то появляется достаточная площадь контакта с землёй. Однако следует помнить, что разносить слишком далеко металлические части заземления нельзя, поскольку связь между ними прервётся. В итоге останется только два отдельно установленных в почву заземлителя, никак не связанных друг с другом. Оптимальное расстояние между двумя контурами заземления составляет 1-2 метра.

    Как нельзя осуществлять заземление

    Согласно параграфу 1.7.110 ПУЭ, запрещается использовать в качестве рабочего заземления любые виды трубопроводов. Кроме того, запрещено выводить заземляющий кабель наружу и подключать его к неподготовленной контактной площадке на шине. Такой запрет объясняется тем, что каждый металл имеет свой индивидуальный потенциал. При воздействии внешних факторов образуется гальванический пар, который способствует процессу электроэрозии. Коррозия может распространиться под оболочку заземляющего провода, что повышает опасность его оплавления во время подачи больших токов на контур заземления в случае аварии. Специальная защитная смазка предотвращает разрушение металла, но действует она лишь в сухом помещении.

    Также ПУЭ запрещает осуществлять поочерёдное заземление электроустановок друг с другом, подключать более одного кабеля на одну площадку заземляющей шины. Если пренебречь такими правилами, то в случае аварии на одной установке она будет создавать помехи в работе соседа. Такое явление называется электрической несопоставимостью. При неправильном подключении рабочего заземления работы по устранению недостатков опасны для жизни.

    Требования к заземляющим конструкциям

    Чтобы разобраться в том, что называется рабочим заземлением, а также какие требования предъявляются к таким конструкциям, следует знать, что для защиты людей от удара электрическим током, напряжение которого не превышает 1000 В, необходимо заземлять абсолютно все металлические части электрооборудования. Немаловажно, чтобы все конструкции, построенные в целях заземления, отвечали всем нормам безопасности, предъявляемым для обеспечения нормальной работоспособности сетей и дополнительных предохранителей от возможной перегрузки.

    Опасность соприкосновения с токоведущими частями

    При контакте человека с токоведущими частями электрической цепи или с металлическими конструкциями, которые оказались под напряжением в результате нарушения изоляционного слоя кабеля, возможно поражение электрическим током. Полученная травма проявляется в виде ожога на кожном покрове. От такого удара человек может потерять сознание, возможна остановка дыхания и сердца. Встречаются случаи, когда удар тока при малом напряжении приводит к смерти человека.

    Меры предосторожности от поражения током

    Чтобы максимально обезопасить людей от контакта с токоведущими частями электроустановки, а также с её металлическими частями, необходимо полностью изолировать опасный объект. Для этого устанавливают различные ограждения вокруг электроустановок.

    Ссылка на основную публикацию
    Adblock
    detector