Нужно ли заземление на освещение?
Alkstroy.ru

Строительный портал

Нужно ли заземление на освещение?

Зачем светодиодному светильнику заземление

Содержание

А знаете ли вы, что значительная часть светодиодных светильников подключается к электрической сети тремя проводами? Насчет двух из них – фазного и нулевого проводов – у большинства людей сомнений не возникает: не подключишь – работать не будет. А вот с заземлением до сих пор связано множество мифов и странных идей. Причём встретить здесь можно диаметрально противоположные мнения: «с заземлением будет только хуже» и «без заземления вас непременно убьёт током… когда-нибудь». Поэтому призовём на помощь здравый смысл, возьмём нормативные документы и попробуем разобраться – нужно ли заземлять светодиодные светильники, и как это правильно делать.

Что такое заземление и зачем оно нужно

Согласно п. 1.7.28 Правил Устройства Электроустановок (ПУЭ), заземление – это преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством. Заземление разделятся на защитное – выполняемое в целях электробезопасности, и рабочее (функциональное) – выполняемое для обеспечения работы электроустановки. С рабочим заземлением большинство из нас сталкивается редко. Оно используется в сетях электроснабжения – на электростанциях, трансформаторных подстанциях и т.п. А вот защитное заземление мы встречаем повсеместно. К нему относится и третий контакт в современных розетках «европейского» образца, и тот самый третий провод при подключении светодиодных светильников. Получается, чтобы светить прибору достаточно фазы и нуля, но, чтобы оставаться при этом безопасным, нужен и заземляющий проводник.

ПУЭ определяет два основных класса систем организации электроустановок – с заземлённой и изолированной нейтралью, разделённых на 3 основных системы: TN, IT и TT. TN в свою очередь в зависимости от реализации, разделяется на TN-C, TN-S и TN-C-S. Описание их выходит за рамки данной статьи, интересующиеся могут посмотреть Википедию. Для нас сейчас важно то, что любая из них предусматривает наличие на стороне потребителя защитного заземления. Получается, что возможность заземлить светильник есть всегда. Давайте разбираться, когда это нужно, а когда нет. И это подводит нас к понятию классов защиты от поражения электрическим током.

Классы защиты от поражения электрическим током

Согласно разделу 7 ГОСТ IEC 61140-2012 «Защита от поражения электрическим током. Общие положения безопасности установок и оборудования», защиту от поражения электрическим током обеспечивают посредством конструктивных мер, применяемых к электрооборудованию и устройствам, совместно со способами их установки. В зависимости от способа обеспечения защиты, приборы классифицируются по классам от 0 до III. Рассмотрим их подробнее – в применении конкретно к светильникам как описано в ГОСТ Р МЭК 60598-1-2011 «Светильники. Часть 1. Общие требования и методы испытаний». Но сначала ещё несколько определений:

Изоляция токоведущих деталей, обеспечивающая основную защиту от поражения электрическим током. Т.е. это изоляция самих проводников, по которым протекает электрический ток.

Самостоятельная изоляция, предназначенная для защиты от поражения электрическим током в случае повреждения основной изоляции. В качестве неё может выступать, например, прочный корпус, полностью выполненный из изоляционного материала, который закрывает практически все металлические детали.

Изоляция, состоящая из основной и дополнительной.

Единая система изоляции токоведущих деталей, обеспечивающая защиту от поражения электрическим током, эквивалентную двойной изоляции. Может состоять из нескольких слоёв, которые, однако, не рассматриваются отдельно друг от друга.

Светильник класса защиты 0 (применяется только для обычных светильников)

В данном светильнике защита от поражения электрическим током обеспечивается основной изоляцией. Присоединение доступных для прикосновения токопроводящих деталей, если они имеются, к защитному заземляющему проводу стационарной проводки не предусмотрено. Функцию защиты при повреждении основной изоляции выполняет внешняя оболочка.

Т.е. если внутри светильника по каким-либо причинам окажется повреждена изоляция провода, находящегося под напряжением (например, вследствие старения, механического повреждения и т.п.), то безопасным он останется только благодаря внешней оболочке.

Пример светильника с классом защиты 0 – это обычная настольная лампа, включаемая в розетку двухконтактной вилкой. Никакого дополнительного заземления у неё не предусмотрено, а вся защита от поражения током включает корпус из изоляционного материала (пластика, например) или металла, отделённого от напряжения изоляцией самих проводов.

Кстати, в нашем каталоге светильники с классом защиты 0 отсутствуют.

Светильник класса защиты I

Светильник, в котором защита от поражения электрическим током обеспечивается не только основной изоляцией, но и путём присоединения доступных для прикосновения проводящих деталей к защитному (заземлённому) проводу стационарной проводки таким образом, чтобы доступные для прикосновения детали не могли стать токоведущими даже в случае повреждения основной изоляции. Причём проводящими деталями будут считаться не только участки металла без покрытия, но и окрашенные части. И если сразу после выхода с конвейера красочный слой и обладает изоляционными свойствами, то далеко не факт, что он останется таким уже через месяц после начала эксплуатации.

Большинство промышленных, уличных, взрывозащищённых светильников, да и любых других приборов в металлических корпусах (за исключением низковольтных), относятся как раз к I классу защиты. Наш каталог – не исключение, большая часть приборов как раз из этой категории.

Светильник класса защиты II

Светильник, в котором защита от поражения электрическим током обеспечивается не только основной изоляцией, но и путём применения двойной или усиленной изоляции и который не имеет устройства для защитного заземления или специальных средств защиты в электрической установке.

К данному типу относятся многие офисные светильники в пластиковых корпусах, которые сами по себе являются изоляторами для тока. Могут встречаться и металлические решения – при условии использования двойной изоляции.

Как правило, светильники класса защиты II контакта заземления не имеют. Бывают и исключения, но в таких случаях заземление не предназначено для защиты самого прибора, а служит каким-то иным целям. Например, чтобы обеспечить непрерывность заземляющего проводника при подключении светильников шлейфом.

Светильник класса защиты III

Светильник, в котором защита от поражения электрическим током обеспечивается применением безопасного сверхнизкого напряжения (БСНН). БСНН подразумевает напряжение не более 50 вольт переменного тока или 120 вольт постоянного тока, причём сама цепь должна быть изолирована от основной сети питания с помощью безопасного разделительного трансформатора или его эквивалента.

Здесь всё понятно из названия – к таким светильникам относятся низковольтные модели светодиодных светильников. Хотя и не все – некоторые такие приборы производители относят к классу I. Светильники III класса не предусматривают использование заземления, и вся их защита состоит в низком напряжении, которое более безопасно само по себе.

Как заземлить светильник

Итоги предыдущего раздела:

  • Светильники классов защиты 0 и III не используют заземление;
  • Светильники класса защиты I должны подключаться к защитному заземлению для исключения поражения электрическим током;
  • Светильники класса защиты II могут использовать (редко, и к тому же не для обеспечения собственной защиты), а могут и не использовать (значительно чаще) заземление.

Теперь, когда появилась ясность, кого подключать, а кого нет – остановимся подробнее на подключении светильников класса I к заземлению. Если прибор подключается к электрической сети посредством кабеля, то, как правило, провод или клемма для подключения уже имеют заземляющую жилу или контакт и достаточно просто соединить их с соответствующими проводниками подводного кабеля.

В некоторых случаях светильники имеют дополнительные контакты для подключения заземления на корпусе – обычно это специальные винтовые терминалы, обозначенные буквами PE или значками заземления. В отдельных случаях, когда прибор состоит из нескольких соединённых между собой частей (например, кронштейны у некоторых консольных светильников), все эти части также соединяются между собой проводниками для уравнивания потенциала и затем все вместе – к заземлению.

Обратите внимание, что безопасность светильника даже при подключенном заземлении обеспечивается только при правильной его установке, поэтому следуйте в этом вопросе инструкциям производителя.

Что делать, если заземления нет?

В целях экономии к светильникам зачастую подводят двухпроводные кабели, не имеющие защитного проводника вовсе, или трёхпроводные, где он используется для группового включения. Особенно часто такая ситуация встречается в старых домах. Все современные жилые и общественные здания строятся с учётом требований, приведённых в главе 7.1 ПУЭ, пункт 7.1.36 которой явно указывает на необходимость использования как минимум трёхпроводных кабелей:

7.1.36. Во всех зданиях линии групповой сети, прокладываемые от групповых, этажных и квартирных щитков до светильников общего освещения, штепсельных розеток и стационарных электроприемников, должны выполняться трехпроводными (фазный – L, нулевой рабочий – N и нулевой защитный – РЕ проводники).

Ну а если заземления всё-таки нет, то для жилых и общественных зданий в подавляющем большинстве случаев вполне допустимо использовать светильники, которые к заземлению не подключаются, о чём указано в пункте 7.1.70 ПУЭ:

Читать еще:  Индикаторная отвертка горит на заземлении

7.1.70. В помещениях без повышенной опасности допускается применение подвесных светильников, не оснащенных зажимами для подключения защитных проводников, при условии, что крюк для их подвески изолирован. Требования данного пункта не отменяют требований п. 7.1.36 и не являются основанием для выполнения электропроводок двухпроводными.

То есть если заземления нет, то в таких помещениях нужно использовать светильник, которому оно и не требуется, что не будет противоречить ПУЭ.

Чем грозит отсутствие или неправильное выполнение заземления

Есть мнение, что значительная часть правил в государственных стандартах избыточны. В ряде случаев с таким утверждением можно согласиться. Как правило, оправданные послабления требуют колоссального опыта и досконального знания используемого оборудования. А это в нынешнюю эпоху разнообразия далеко не всегда возможно. К тому же, последствия несоблюдения правил, оказываются весьма плачевными – как в таких случаях принято говорить: «написаны кровью». И возникает резонный вопрос – а стоит ли рисковать, если можно просто следовать ПУЭ и ГОСТам? Каждый мастер принимает решение самостоятельно. Но стоит придерживаться правила: профессионалы не имеют права рисковать жизнью и здоровьем других людей!

Случается, что при обучении технике безопасности при работе с электрическими установками, опытные преподаватели акцентируют внимание слушателей на том, что будет если не следовать правилам. Кстати, приводимые ими примеры действуют на будущих электриков гораздо эффективнее, чем зубрежка правил.

Что же будет, если не заземлить светодиодный светильник, который, согласно классификации, должен быть заземлён? В большинстве случаев он будет работать в штатном режиме, но при аварийной ситуации рискует стать источником повышенной опасности.

Приведём пример. В уличном светильнике со временем из-за перепадов температур и влажности происходит повреждение изоляции питающего кабеля, находящегося под напряжением. Согласно закону подлости, между корпусом прибора и повреждённым проводником образуется электрическая проводимость. Если бы прибор был заземлён, то в результате образовавшейся утечки тока цепь была бы обесточена – либо защитным автоматическим выключателем вследствие короткого замыкания, либо дифференциальным устройством защитного отключения. И дальше осталось бы только найти причину и заменить светильник.

Ну а если заземление отсутствует? Тогда корпус прибора оказывается под опасным напряжением. И если при проведении работ до него кто-то дотронется, то последствия могут быть плачевными.

Как видно из примера, само по себе заземление – это не панацея. Как и любое средство защиты, оно эффективно только в случае системного использования вместе с другими методами – теми же автоматическими выключателями. Нельзя говорить, что одно только заземление или, например, одни только УЗО обеспечат надлежащий уровень защиты. Но вкупе они позволяют сделать освещение безопасным для людей.

И последнее. Не верьте тем, кто говорит, что вместо заземления к соответствующему контакту светильника можно подключить ещё один нулевой проводник или перемычку от уже имеющегося – в данном случае это будет грубым нарушением ПУЭ и также может привести к печальным последствиям. Даже в том случае, когда для подачи электропитания в распределительные щиты используются PEN-проводники, объединяющие в себе рабочий ноль и защитное заземление, любые соединения между ними после точки разделения на два независимых проводника не допускаются. Явное указание на это также содержится в уже упоминавшемся пункте 7.1.36 ПУЭ.

Заземление в частном доме: Доверяй, но дублируй

Схема с сайта aquatic-home.ru

Поселковые электрики нередко просто забивают в землю кусок стального уголка или арматуры, к которому подсоединяют медный провод. Да, как дополнительное заземление такая конструкция возможна. Но для полноценного заземляющего контура ее недостаточно.

Особого внимания требует проводка, сделанная по системе заземления ТТ (на схеме ниже). При таком подключении к контуру заземления на вашем участке будут предъявляться повышенные требования: должен быть не один, а как минимум два-три электрода. Ведь, в отличие от предыдущих вариантов, здесь он вынужден « справляться » с работой самостоятельно, без дублеров, — то есть повторных заземлений на пути от трансформаторной подстанции к вашему щитку.

Схема с сайта housediz.ru

Сколько фаз должно заходить в дом?
Подключение в частном доме может быть как однофазным (как на схеме выше), так и трехфазным — в этом случае вы « забираете » электричество от поселковой сети не с двух, а с трех проводов. Для поселковых сетей с выделенной мощностью 15 кВт последний вариант немного дороже, но для развитого домашнего хозяйства предпочтительнее.

Во-первых, он позволяет пользоваться техникой, требующей подключения к трехфазным розеткам (электрокотлы, электроплиты, печи для сауны, деревообрабатывающие станки).

Во-вторых, при грамотно продуманной схеме электроснабжения позволяет минимизировать просадки напряжения в сети при включении мощных приборов.

В-третьих, в трехфазной сети можно равномерно распределить нагрузки: фаза в дом, фаза в баню, все три — в гараж и мастерскую.

Фото с сайта chebo.biz

Как сделать заземление в частном доме?
Заземлитель для электросети имеет идентичную конструкцию, независимо от количества фаз. Больше того, такой же контур заземления, как для частного дома с 15-ю кВт, нужен и для молниеотвода. Здесь возможны два варианта.

1. Использовать в качестве заземлителя врытые или вбитые в землю проводники: стальной пруток, уголок и т.п. Подойдут два, а лучше три металлических прута, соединенные сварной перемычкой. Пруты располагают контуром в виде треугольника на расстоянии не менее трех метров друг от друга. Гл убина заземления — 2–3 м. При этом перемычки между прутами должны располагаться чуть ниже, чем на полметра под землей. К одной из перемычек приваривают токоотвод из стальной проволоки, который выводится на поверхность.

Фото с сайта amperof.ru

Важно: Для подземной части такой конструкции допустимо использовать только сварные соединения, поскольку любые другие (например, резьбовые) в земле корродируют и теряют надежность. Медный провод от домашнего щитка подсоединяется к токоотводу при помощи зажимной клеммы. Зажим всегда обрабатывают антикоррозийной смазкой.

Более подробно о том, как правильно сделать заземление в частном доме (и для чего оно нужно) , мы писали в статье про молниезащиту . Убедитесь, что поселковый электрик знает эти детали, прежде чем подключить заземление в щитке .

Фото с сайта zazem812.ru

2. Купить готовый комплект в виде набора стальных стержней (есть более дорогие, из меди или нержавейки) и контактных групп. Преимущество « коробочных » решений — надежные контакты, быстрый монтаж системы заземления и повышенный срок службы: медь и нержавейка служат многие десятилетия.

Для частных домов в средней полосе России с традиционно высоким уровнем грунтовых вод этого обычно достаточно. Заземлители не требуют обслуживания — только периодического (раз в два-три года) осмотра внешних контактных групп, а при необходимости — зачистки и смазки контактов.

Узнать или проверить, есть ли заземление в частном доме, можно так же, как и в квартире.

Фото с сайта elektro.ru

Сложный случай: Электролитическое заземление
Электролитическое заземление — это тоже « коробочное » решение, но предназначенное для грунтов с высоким электрическим сопротивлением (например, для заземления в сухом песчаном грунте ), мест, где нет возможности заглубиться в грунт (скальная основа), и при ограниченных площадях (высокоплотная застройка).

В качестве заземлителя здесь используется L-образный или стержневой полый электрод, в который засыпается специально подготовленная смесь минеральных солей.

Однако если ваш дом не расположен в пустыне или условиях вечной мерзлоты, электролитическое заземление будет излишним. Его основная область применения — индустриальные объекты.

Фото с сайта keaz.ru

Совет: Предотвратить нежелательные последствия поможет установка на входе щитка устройства защиты от импульсных перенапряжений (УЗИП). Монтируется оно на DIN-рейку, выглядит так же, как УЗО (устройство защитного отключения), стоит несколько тысяч рублей. Но ремонт сгоревшей техники или устранение последствий пожара обойдутся намного дороже.

Что заземлять, кроме электропроводки?
В отличие от многоквартирных домов, где заземления требует лишь электропроводка, в частных постройках есть и другие элементы, которые нужно подключать к заземляющему контуру. Например, газовый котел и металлические трубы системы газового отопления. Последние должны быть еще и соединены между собой системой уравнивания потенциалов (СУП). Решение вопроса, как сделать заземление газового котла, оставьте монтажникам оборудования. Самодеятельности здесь не место.

У представителей газовых компаний свои (повышенные) требования к качеству заземления. Основной показатель хорошей работы заземлителя — сопротивление растеканию электрического тока. Нормативное значение для частного домовладения — не более 30 Ом (измеряется специалистами непосредственно в точке расположения заземлителя, « домашними » средствами его не проверить). Заземлители, сделанные по схемам, которые мы описали ранее, этому значению соответствуют. В случае если ваш контур не « дотягивает » до высоких требований газовщиков (не более 10 Ом), скорее всего, придется делать дополнительное точечное заземление.

Читать еще:  Металлопластиковые трубы или полипропиленовые для водопровода

Не забудьте про УЗО!
Независимо от того, какое именно заземление сделано в вашем доме, для подстраховки на случай его « осечки » ставьте отдельные УЗО на исходящие линии — чтобы при внештатной ситуации в бане, в гараже или на улице — с газонокосилкой — у вас не « вырубало » весь дом.

Особое внимание стоит уделить розеткам в помещениях повышенной влажности (санузлы, предбанник, цокольный этаж). Помните, что в них можно устанавливать только розетки, специально предназначены для уличной установки — в брызгозащищенном исполнении (с крышками). А именно: минимальный класс защиты — IP54 (помещение), IP65 (улица), с заземляющим контактом, подключение — только через УЗО.

Создайте дискуссию на форуме

такую штуку, как система заземления в своём доме, лучше не делать самому, а пригласить людей, которые в этом разбираются. там тонкостей больше, чем хотелось бы. например, сделали вы заземление (повторное для tn-c-s или новое, для tt), а затем провели линию в дом по воздуху — и всё, считайте, что по-новой нужно заземление делать. или сделали вы заземление нуля для tn-c-s, а тут авария, и где-то нуль отвалился, и весь ваш коттеджный посёлок теперь через ваше заземление работает, и ваш дом внезапно сгорает. или завели внутрь дома воздушный кабель с тем же результатом, потому что он горючим оказался.

“Не нужно обращаться в управляющую компанию и просить ее модернизировать проводку во время очередного ремонта” — это весело. только если у вас опломбированный щиток висит где-то на столбе, а не в доме, и в нём автомат нуль разрывает, то без управляющей компании у вас может не получиться сделать tn-c-s вообще никак.

и подобных тонкостей там очень-очень много. так что лучше позвать энергетика из управляющей компании или из энергоснабжения, чтобы затем не было мучительно больно.

а, чуть не забыл. для безопасности лучше разделять заземление для электроприборов и молниезащиту. всё-таки молния — это гигаватты мощности на хилый кабель. устройства защиты от импульсных помех в линиях ставятся каскадами, одно маленькое устройство в доме может не выдержать подобных испытаний, и лучше быть подальше от всего, через что идёт ток от молнии.

Нужно ли заземление на люстру? Как это делать?

При проектировании электросети квартиры и установке люстры необходимо учесть множество важных моментов и решить несколько вопросов. Один из них – это заземление. Такая операция применяется не так редко, и для каждого отдельного случая есть ответ с объяснением на вопрос о том, стоит ли заземлять люстру.

Что такое заземление

Прежде всего, стоит разобраться в том, что такое заземление. Научная формулировка ограничивается тем, что это процедура соединения какого-либо электроприбора к заземляющего устройства. На плане и в практике все выглядит довольно просто: «земля» (т.е. грунт) будет притягивать к себе электрический ток, снижая нагрузку сети.

Так получится добиться более низкого напряжения – иначе человек сможет прикоснуться к люстре всего один раз. Сам заземлитель будет находиться в грунте, который будет выступать для тока проводником. Качество установленного соединения определяется путем расчета сопротивления растеканию тока. Улучшить этот показатель можно, увеличив площадь, на которой расположены электроды заземлителя или уменьшить сопротивление грунта на отдельном участке.

Стоит ли заземлять люстру

Во-первых, заземлить можно не все люстры (и в принципе источники освещения), а только те, что получили металлический корпус. Проводка, подведенная к ним, сделана по современным технологиям, и ее следует хорошо защитить. Подключить заземлитель стоит для безопасности – не имеет значения, сухое это помещение или влажное.

Подключение «земли» необходимо в новом или реконструированном доме, но и для старого здания это не будет лишним. «Закрыв» люстру, можно обезопасить помещение – поскольку напряжение в электросети снизится, комната будет полностью безопасна. Есть еще один нюанс – совместимость с противопожарными автоматизированными системами. Если такая система подключена, обязательно проведите заземление.

Подготовка к подключению «земли» к люстре

Важно уделить достаточно времени подготовительному этапу – собрать необходимые инструменты, а также тщательно подготовиться. В число инструментов, которые понадобятся при заземлении люстры, входят:

  • Стремянка – достаточно высокая и прочная опора, которая не будет шататься под ногами. Можно найти аналог;
  • Мильтиметр – прибор, с помощью которого измеряется напряжение и сопротивление электрической цепи, а также сила тока;
  • Нож – для корректировки длины проводов;
  • Пассатижи;
  • Индикационная отвертка – ее стоит прислонять до тех точек, к которым Вы собираетесь притронуться, чтобы убедиться в отсутствии тока;
  • Крестообразная и плоская отвертка;
  • Изолента;
  • Карандаш;
  • Клеммы для проводов.

После этого следует внимательно ознакомиться со схемой, которая идет в комплекте с люстрой. На этой схеме будут показаны все разветвления, порядок соединения проводов, а также соединение с выключателем. Например, если к люстре поведено три различных провода, детально описывается, как разделятся выходы и как осуществляется подключение ламп.

По-другому обстоит дело с заземлением: схема может не содержать информации о соответствующем проводе типа PE (он желто-зеленый). Два других – L (фаза, коричневый или белый цвет) и N («ноль», синий цвет), будут отмечены и промаркированы, что сделает сам порядок установки люстры предельно простым.

Порядок заземления люстры

Для того чтобы подключить «землю» к люстре, которая уже установлена, проведите следующие действия в качестве разведки:

  1. Снимите лампочки. Оголите выходящие провода.
  2. Установите режим «прозвонка» на мультиметре.
  3. Один щуп должен лежать на боковых контактах патрона лампочки, а второй щуп стоит поочередно проводить по защищенным концам. Если Вы услышите сигнал, то на месте есть нулевой вывод. Этот проводник необходимо отметить маркером.
  4. Далее поставьте щуп к центральному контакту патрона. Также «прозвоните» остальные сигналы, чтобы отметить фазу.
  5. Первый щуп на фазу, второй – к средним контактам. Если сигнал пойдет от всех патронов, светильник является одноконтурным, тогда третий провод может быть использован для заземления.
  6. Если звука нет, значит, устройство двухконтурное, второй провод – «фаза».

При установке действия по заземлению потолочных светильников должно быть следующим:

  1. На тыльной стороне корпуса светильника найдите значок заземления.

  1. Индикаторной отверткой определите фазу и ноль. Фаза заставит отвертку «загореться».
  2. Кольцо провода заземления установите на сердцевину и закрепите гайкой.
  3. Третий провод (желто-зеленый) изолируется. Так выполняется заземление, главная задача которого – «перекрыть» путь тока по металлическому корпусу светильника.
  4. Все три провода подключите к «рогам» – так называются провода, выходящие из потолка.

Наглядная инструкция по установке «земли» для люстры показана в видео:

Как подключить люстру, определить заземление и ноль — инструкция

25 Сен 2019г | Раздел: Электрика

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомиться с инструкцией и в этой ее части рассмотрим схему освещения с применением защитного заземления. Здесь же Вы узнаете, как определить заземление и ноль на потолочных выводах.

Однако хочу сразу предупредить, что существенной разницы между схемами с заземлением и без Вы не заметите, так как они абсолютно одинаковы, и различаются лишь наличием или отсутствием заземляющего проводника.

Но и здесь есть некоторые нюансы, без знания которых у новичков могут возникнуть трудности при подключении люстры.

И все же перед тем как приступить к чтению я Вам рекомендую изучить первую часть инструкции, так как именно в ней в ней много полезной информации для новичков. И возможно после изучения первой части дальнейшее ознакомление с инструкцией Вам уже не понадобится.

Электрическая проводка с заземлением

1. Разбираемся с потолочными проводами

Рассмотрим ситуацию, когда на потолке три вывода, а какие из них фаза, ноль и заземление Вы не знаете. Для определения этих выводов воспользуемся индикаторной отверткой и контрольной лампой, представляющей собой обычную лампу накаливания и патрон с двумя выводами.

Из всех трех выводов наибольшую трудность предоставляет определение нуля и заземляющего проводника, поэтому остановимся на поиске этих двух выводов.

А чтобы исключить все возможные совпадения будем искать заземляющий проводник, так как по отношению к нулю его поиск не требует внесения изменений в схему освещения.

Определение заземляющего проводника:

Следующие действия выполняются строго по пунктам. Будьте внимательны и осторожны, так как некоторые пункты придется выполнять под действующим напряжением.

а) В доме или квартире отключаем из розеток все бытовые приборы.

б) В квартирном или домовом щитке находим вводной автомат и на его входных (верхних) клеммах индикаторной отверткой определяем фазу и ноль. Как правило, фазу подключают на левую клемму.

Читать еще:  Чем можно резать полипропиленовые трубы?

в) Выключаем вводной автомат и с его нижней (выходной) клеммы отключаем нулевой провод.

г) Включаем вводной автомат. Включаем выключатель и индикаторной отверткой находим фазный вывод на одном из потолочных выводах. Запоминаем его.

д) Выключаем выключатель и отверткой проверяем отсутствие фазы на фазном выводе. Если фаза исчезла, значит, берем вывод контрольной лампы и соединяем с найденным фазным выводом.

е) Этот пункт выполняйте очень осторожно, так как при касании к выводу заземления возможно небольшое искрение.

Включаем выключатель и свободным выводом контрольной лампы поочередно касаемся оставшихся двух выводов. При касании к которому лампа загорится, тот и будет являться выводом защитного заземления. Запомните его.

ж) Выключаем выключатель и вводной автомат. К нижней (выходной) клемме вводного автомата подключаем ранее отсоединенный нулевой провод.

з) Подключаем выводы люстры к потолочным выводам. Включаем вводной автомат и проверяем работу люстры.

Как видите, процесс определения заземляющего проводника не очень труден. Главное понимать, что делаешь и в процессе поиска быть внимательным и очень осторожным.

2. Монтажная схема подключения одноклавишного выключателя:

На схеме защитный заземляющий проводник РЕ обозначен жилой зеленого цвета. Он так же, как и ноль, из распределительной коробки сразу поступает на потолок. С потолка выходит третьим выводом и соединяется с металлическим корпусом люстры.

Для соединения выводов в люстре предусмотрена клеммная колодка. Как правило, для удобства и простоты подключения каждая клемма колодки обозначена, и поэтому подключение не составляет большого труда.
Главное определиться с потолочными выводами.

Таким же образом заземляющий проводник соединяют при подключении люстры к двойному и тройному выключателям.

Запомните. Заземление в работе схемы освещения не участвует. Оно служит только для защиты от поражения электрическим током.

Бывают случаи, когда в связи с конструктивными особенностями корпус люстры на 90% выполнен из диэлектрического материала и для этой модели подключение заземления не предусмотрено производителем.

В этом случае потолочный заземляющий вывод не подключается. Его конец изолируется, например, изолентой и оставляется не подключенным.

3. Полная монтажная схема освещения с одноклавишным выключателем.

И в заключении для Вас полная монтажная схема освещения для одного помещения с применением одноклавишного выключателя, на которой показан фрагмент местного шита, включающий в себя УЗО и автоматический выключатель.

На заметку. Одно УЗО можно использовать как общее на всю квартиру или дом, или же разделить, например, на два, чтобы одно контролировало все освещение, а второе все розетки.

Фаза L поступает на вход УЗО и с его выхода на автоматический выключатель. С выхода выключателя фаза трехжильным кабелем уходит в распределительную коробку и в точке 1 соединяется с жилой провода, приходящего от выключателя.

С выходной клеммы L1 выключателя фаза двухжильным кабелем поступает в коробку, и в точке 2 соединяется с жилой трехжильного кабеля, приходящего с потолка. Этим кабелем фаза уходит на потолок и поступает на левый вывод лампы.

Ноль N заводится на вход УЗО и с его выхода трехжильным кабелем заходит в распределительную коробку, где в точке 3 соединяется с жилой потолочного кабеля. По кабелю ноль попадает на потолок и соединяется с правым выводом лампы.

Защитный заземляющий РЕ проводник заходит в щит и подключается на шинку заземления. От шинки он попадает в распределительную коробку, где в точке 4 соединяется с жилой потолочного кабеля. По кабелю проводник попадает на потолок и соединяется с металлическим корпусом лампы (люстры).

Теперь Вы точно сможете подключить люстру, а также определить ноль и заземляющий проводник.

Нужно ли заземлять опоры освещения и как правильно это делать

Системы наружного освещения предназначены для подсветки в темное время суток проезжей части в населенных пунктах и на транспортных развязках автомагистралей, тротуаров и внутридомовых территорий, необходимых участков на охраняемых объектах, приусадебных участков в частных домовладениях. Для их безопасного функционирования применяется заземление опор освещения (мачт, столбов) и наружных светильников.

Установка систем наружного освещения производится соответственно требованиям Правил устройства электроустановок (ПУЭ).

Почему необходимо заземлять опоры

Нарушение изоляции, обрыв провода, перекрытие или пробой изолятора вызывают протекание токов через мачту и образование напряжения прикосновения и пошагового напряжения. Снабжение опор заземляющими устройствами защищает от электротравмирования находящихся поблизости людей.

Исходя из инструкции по молниезащите и устройству систем заземления, металлические опоры, применяемые при проведении наружного освещения, обязательно нужно заземлить.

Заземление требуется при размещении на опоре молниезащитных средств. В случае прямого удара молнии в опору, через заземляющее устройство происходит отвод импульсных токов, понижая напряжение на изоляции силового кабеля.

Способы заземления

Для каждого вида электроопор в ПУЭ разработаны условия и способы заземления. Существует 3 вида столбов линии электропередачи:

В п. 6.1.45 ПУЭ указано, что железобетонные и металлические опоры в сетях с изолированной нейтралью должны быть подключены к заземлителю, в сетях с заземленной нейтралью — к PE (PEN) проводнику.

Арматура на деревянных столбах не заземляется.

Важно! Деревянные опоры заземляются только, если они установлены в населенном пункте с одноэтажными строениями и их высота превышает высоту строений.

Заземление железобетонных опор осуществляется двумя способами:

  1. В сетях с изолированной нейтралью при наличии специальных выпусков в качестве заземляющих магистралей (проводников) применяют продольную арматуру конструкции. При ее отсутствии проводником служит прут диаметром не менее 10 мм или многожильный провод сечением не менее 35 кв. мм. Один конец проводника соединяется с заземлителем, второй — с заземляемыми элементами.
  2. В сетях с заземленной нейтралью арматура и опора подключаются к нулевому проводу при помощи перемычки из неизолированного проводника. При соединении используются ответвительные болтовые зажимы. Для соединения проводника с опорой применяют болтовой зажим или проушину на столбе или траверсе.

Металлические опоры устанавливают чаще, они имеют перед деревянными и железобетонными следующие преимущества:

  • способны выдерживать большие статические нагрузки;
  • функциональны в любых климатических зонах;
  • широкий выбор форм и дизайна;
  • большой срок эксплуатации, до 75 лет.

Заземление металлических опор осуществляется так же, как и ж/б мачт. Заземляющим проводником может служить корпус опоры. Заземляемые элементы соединяются с опорой, а основание опоры — с заземлителем.

Устройство искусственного заземления

Заземляющее устройство состоит из заземляющей магистрали и заземлителя.
Согласно требованиям ПУЭ, в качестве заземляемых электродов, перемычек и магистралей могут применяться:

  • стальной прут диаметром 10 мм;
  • оцинкованный стальной прут диаметром 6 мм;
  • стальной уголок с толщиной полки 4 мм;
  • стальная полоса толщиной 4 мм;
  • отбракованные трубы с толщиной стенки 3,5 мм.

Сечение магистрали должно быть не менее 100 кв. мм, а с молниезащитой — не менее 160 кв. мм.

Соединение магистрали и заземлителя осуществляется путем сварки, места соединения покрываются антикоррозийной краской.

Вышеперечисленные размеры являются минимальными и применяются на временных конструкциях. Для заземляющих устройств на постоянных осветительных системах диаметр заземляемых электродов рассчитывается в зависимости от насыщенности влагой местного грунта. В сухих грунтах диаметр увеличивается на 2-3 мм, во влажных — до 2 раз больше минимального значения.

Варианты подключения

В зависимости от состава и удельного сопротивления грунта применяется заземлитель с вертикальным или горизонтальным расположением электродов.

Если проводимость нижних слоев грунта ниже, чем верхних, рекомендована установка заземлителей с вертикально расположенными электродами. При небольшой занимаемой площади они обеспечивают малое сопротивление растеканию тока и способствуют лучшему отводу импульсных токов при попадании молнии в опору. Электроды углубляются на 3 м. Высота над уровнем грунта — 0,5 м.

При высокой проводимости верхних слоев грунта, в каменистых и скальных грунтах, где невозможно заглубление вертикальных электродов, допускается применение горизонтальных протяженных электродов. Электроды располагаются на глубине 0,5 м, а на вспахиваемых участках углубляются на 1 м.

Важно! При повышенном удельном сопротивлении грунтов целесообразно применение противовесов — непрерывных горизонтальных электродов, соединяющих сразу несколько опор.

Проверка заземления

Согласно Правилам технической эксплуатации электроустановок потребителей (ПТЭЭП),
тщательный осмотр наружных частей устройства заземления следует проводить не реже 1 раза в 6 месяцев. Проверка с выборочным вскрытием грунта проводится не реже 1 раза в 12 лет.

Замеры сопротивления заземления на опорах внешнего освещения проводятся не реже 1 раза в 6 лет.

Справка! Сопротивление устройств заземления на опорах должно быть не более 30 Ом.

Системы наружного освещения, смонтированные, заземленные и обслуживаемые согласно требованиям ПУЭ и ПТЭЭП, могут надежно и безопасно прослужить не одно десятилетие.

Наличие системы заземления на электроопорах обезопасит электромонтажные работы и убережет линию электропередачи от перенапряжения в случае прямого попадания молнии в опору.

Ссылка на основную публикацию
Adblock
detector